836 research outputs found

    Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease: the salivary glands of patients with Sjögren's syndrome

    Get PDF
    Structures resembling germinal centers are seen in the salivary glands of patients with Sjögren's syndrome, but it is not known whether the microenvironment of these cell clusters is sufficient for the induction of a germinal center response. Therefore, we cloned and sequenced rearranged Ig V genes expressed by B cells isolated from sections of labial salivary gland biopsies from two Sjögren's syndrome patients. Rearranged V genes from B cells within one cell cluster were polyclonal and most had few somatic mutations. Two adjacent clusters from another patient each contained one dominant B cell clone expressing hypermutated V genes. None of the rearranged V genes was found in both clusters, suggesting that cells are unable to migrate out into the surrounding tissue and seed new clusters. The ratios of replacement to silent mutations in the framework and complementarity determining regions suggest antigen selection of high-affinity mutants. These results show that an antigen-driven, germinal center-type B cell response is taking place within the salivary glands of Sjögren's syndrome patients. In view of the recent demonstration of a germinal center response within the rheumatoid synovial membrane and the existence of similar structures in the target tissues of other autoimmune. diseases, we propose that germinal center- type responses can be induced in the nonlymphoid target tissues of a variety of autoimmune diseases

    Finite top quark mass effects in NNLO Higgs boson production at LHC

    Full text link
    We present next-to-next-to-leading order corrections to the inclusive production of the Higgs bosons at the CERN Large Hadron Collider (LHC) including finite top quark mass effects. Expanding our analytic results for the partonic cross section around the soft limit we find agreement with a very recent publication by Harlander and Ozeren \cite{Harlander:2009mq}.Comment: 15 page

    Physics Behind Precision

    Full text link
    This document provides a writeup of contributions to the FCC-ee mini-workshop on "Physics behind precision" held at CERN, on 2-3 February 2016.Comment: https://indico.cern.ch/event/469561

    Precise predictions for Higgs production in models with color-octet scalars

    Full text link
    We describe an effective-theory computation of the next-to-next-to-leading order (NNLO) QCD corrections to the gluon-fusion production of a Higgs boson in models with massive color-octet scalars in the (8,1)_0 representation. Numerical results are presented for both the Tevatron and the LHC. The estimated theoretical uncertainty is greatly reduced by the inclusion of the NNLO corrections. Color-octet scalars can increase the Standard Model rate by more than a factor of two in allowed regions of parameter space.Comment: 6 pages, 5 figures, to appear in the proceedings of the "10th DESY Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory", Woerlitz, Germany, April 25-30, 201

    Three-loop \beta-functions for top-Yukawa and the Higgs self-interaction in the Standard Model

    Full text link
    We analytically compute the dominant contributions to the \beta-functions for the top-Yukawa coupling, the strong coupling and the Higgs self-coupling as well as the anomalous dimensions of the scalar, gluon and quark fields in the unbroken phase of the Standard Model at three-loop level. These are mainly the QCD and top-Yukawa corrections. The contributions from the Higgs self-interaction which are negligible for the running of the top-Yukawa and the strong coupling but important for the running of the Higgs self-coupling are also evaluated.Comment: 22 pages, 7 figures. Few extra citations are added; the plots are improved. Results in computer readable form can be retrieved from http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-012

    Bˉ→Xsγ\bar{B}\to X_s \gamma in the Two Higgs Doublet Model up to Next-to-Next-to-Leading Order in QCD

    Get PDF
    We compute three-loop matching corrections to the Wilson coefficients C7C_7 and C8C_8 in the Two Higgs Doublet Model by applying expansions for small, intermediate and large charged Higgs boson masses. The results are used to evaluate the branching ratio of Bˉ→Xsγ\bar{B}\to X_s \gamma to next-to-next-to leading order accuracy, and to determine an updated lower limit on the charged Higgs boson mass. We find \mhplus \ge 380 GeV at 95% confidence level when the recently completed BABAR data analysis is taken into account. Our results for the charged Higgs contribution to the branching ratio exhibit considerably weaker sensitivity to the matching scale μ0\mu_0, as compared to previous calculations.Comment: 20 pages, 15 figures; v2: minor modifications, matches published version in JHE

    Cosmological implications of the Higgs mass measurement

    Full text link
    We assume the validity of the Standard Model up to an arbitrary high-energy scale and discuss what information on the early stages of the Universe can be extracted from a measurement of the Higgs mass. For Mh < 130 GeV, the Higgs potential can develop an instability at large field values. From the absence of excessive thermal Higgs field fluctuations we derive a bound on the reheat temperature after inflation as a function of the Higgs and top masses. Then we discuss the interplay between the quantum Higgs fluctuations generated during the primordial stage of inflation and the cosmological perturbations, in the context of landscape scenarios in which the inflationary parameters scan. We show that, within the large-field models of inflation, it is highly improbable to obtain the observed cosmological perturbations in a Universe with a light Higgs. Moreover, independently of the inflationary model, the detection of primordial tensor perturbations through the B-mode of CMB polarization and the discovery of a light Higgs can simultaneously occur only with exponentially small probability, unless there is new physics beyond the Standard Model.Comment: 28 LaTeX pages, 6 figure

    Theoretical precision in estimates of the hadronic contributions to (g-2)_mu and alpha_QED(M_Z)

    Full text link
    I review recent estimates of the non-perturbative hadronic vacuum polarization contributions. Since these at present can only be evaluated in terms of experimental data of limited precision, the related uncertainties pose a serious limitation in our ability to make precise predictions. Besides e+e- - annihilation data also tau decay spectra can help to get better predictions. Here, it is important to account for all possible iso-spin violations in tau - decay spectra, from which e+e- cross sections may be obtained by an iso-spin rotation. The observed 10% discrepancy in the region above the rho may be understood as a so far unaccounted iso-spin breaking effect.Comment: 10 pages, 2 tables, 4 figure

    Virtual Top-Quark Effects on the H->bb-bar Decay at Next-to-Leading Order in QCD

    Full text link
    By means of a heavy-top-quark effective Lagrangian, we calculate the three-loop corrections of O(alpha_s^2 G_F M_t^2) to the H->bb-bar partial decay width of the standard-model Higgs boson with intermediate mass M_H<<2M_t. We take advantage of a soft-Higgs theorem to construct the relevant coefficient functions. We present our result both in the MS-bar and on-shell schemes of mass renormalization. The MS-bar formulation turns out to be favourable with regard to the convergence behaviour. We also test a recent idea concerning the naive non-abelianization of QCD.Comment: 8 pages (Latex), 5 figures (Postscript

    Evidence for Colour-Octet Mechanism from CERN LEP2 gamma gamma -> J/psi + X Data

    Full text link
    We present theoretical predictions for the transverse-momentum distribution of J/psi mesons promptly produced in gamma gamma collisions within the factorization formalism of nonrelativistic quantum chromodynamics, including the contributions from both direct and resolved photons, and we perform a conservative error analysis. The fraction of J/psi mesons from decays of bottom-flavoured hadrons is estimated to be negligibly small. New data taken by the DELPHI Collaboration at LEP2 nicely confirm these predictions, while they disfavour those obtained within the traditional colour-singlet model.Comment: 11 pages (Latex), 3 figures (Postscript); updated experimental data included, references added, accepted for publication in Phys. Rev. Let
    • …
    corecore